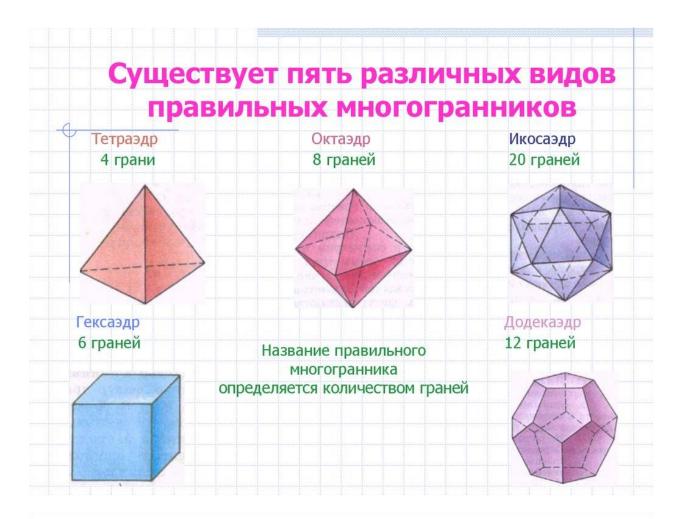
Правильные многогранники



Правильные многогранники удовлетворяют формуле

Γ+B=P+2

		(
Название	Тетраэдр	Октаэдр	Гексаэдр	Додекаэдр	Икосаэдр
Число граней	4	8	6	12	20
Число вершин	4	6	8	20	12
Число рёбер	6	12	12	30	30

Сколько граней может сходиться в вершине правильного многогранника?

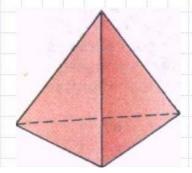
Существуют многогранники, гранями которых являются правильные треугольники

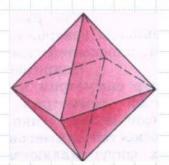
Угол правильного треугольника равен 60°, значит в одной вершине может сходиться 3, 4 или 5 правильных треугольников

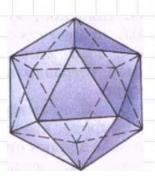
Тетраэдр

Октаэдр

Икосаэдр





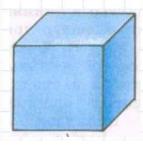


Сколько граней может сходиться в вершине правильного многогранника?

Существуют многогранники, гранями которых являются правильные четырёхугольники

Угол квадрата равен 90°, значит в <u>одной вершине</u> может сходиться только $\underline{3}$ квадрата

Гексаэдр

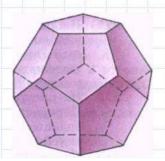


Сколько граней может сходиться в вершине правильного многогранника?

Существуют многогранники, гранями которых являются правильные пятиугольники

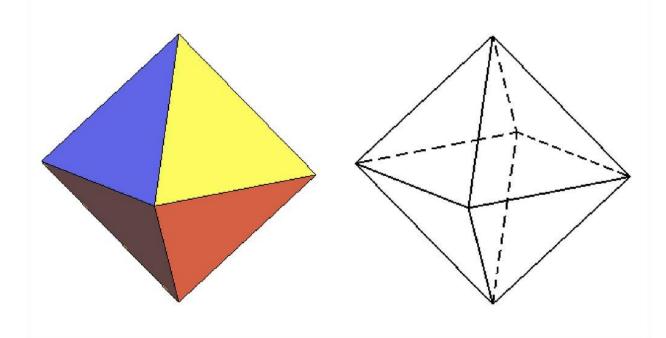
Угол правильного пятиугольника равен 108°, значит в <u>одной вершине</u> может сходиться только <u>3 правильных</u> пятиугольника

Додекаэдр



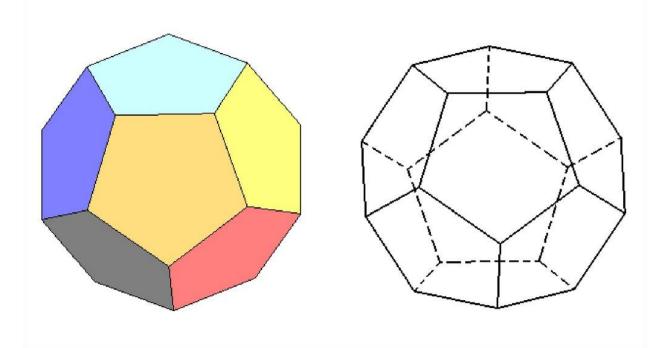
ОКТАЭДР

Многогранник, гранями которого являются правильные треугольники и в каждой вершине сходится четыре грани называется октаэдром.



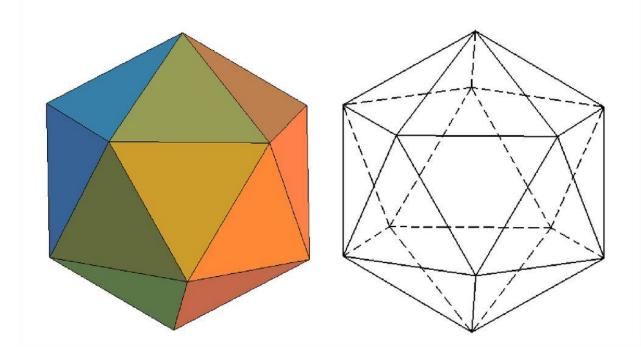
ДОДЕКАЭДР

Многогранник, гранями которого являются правильные пятиугольники и в каждой вершине сходится три грани называется додекаэдром.



ИКОСАЭДР

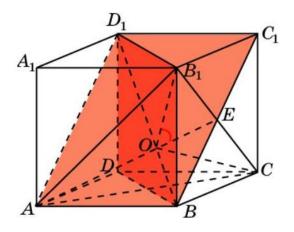
Многогранник, в каждой вершине которого сходится пять правильных треугольников называется икосаэдром.



Примеры решения задач

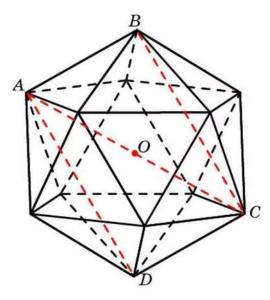
В кубе $A...D_1$ найдите угол между плоскостями

$$ABC_1$$
 и BB_1D_1 .



Решение: Заметим, что плоскость равностороннего треугольника ACB_1 перпендикулярна диагонали BD_1 , которая проходит через центр O этого треугольника. Искомым линейным углом будет угол B_1OE , который равен 60° .

Найдите радиус сферы, описанной около единичного икосаэдра.



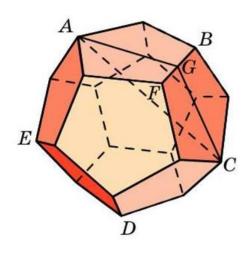
Решение. В прямоугольнике ABCD AB = CD = 1, BC и AD — диагонали правильных пятиугольников со сторонами 1. Следовательно,

$$BC = AD = \frac{1+\sqrt{5}}{2}$$
.
По теореме Пифагора $AC = \sqrt{\frac{5+\sqrt{5}}{2}}$.

Искомый радиус равен половине этой диагонали, т.е.

$$R = \frac{\sqrt{10 + 2\sqrt{5}}}{4}.$$

Найдите двугранные углы додекаэдра.

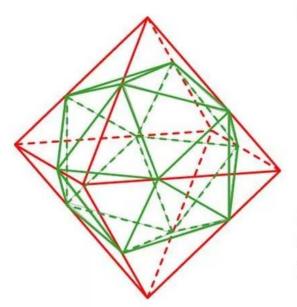


Решение: Рассмотрим правильный додекаэдр с ребром 1. Из вершин A и Cопустим перпендикуляры AG и CG на ребро *BF*. Угол *AGC* будет линейным углом Фискомого двугранного угла. В треугольнике *AGC* имеем:

$$AC = \frac{\sqrt{5} + 3}{2}$$
, $EG = FG = \frac{\sqrt{2\sqrt{5} + 5}}{2}$.

Используя теорему косинусов, находим $\cos \phi = -\frac{\sqrt{5}}{5}$. Откуда $\phi \approx 116^{\circ}34'$.

Найдите ребро икосаэдра, вписанного в единичный октаэдр.



Решение. Если ребро октаэдра равно 1, то ребро, вписанного в него куба, равно $\frac{\sqrt{2}}{}$

Ребро икосаэдра, описанного

около этого куба, будет равно
$$\frac{\sqrt{2}}{3} \cdot \frac{6}{3+\sqrt{5}} = \frac{3\sqrt{2}-\sqrt{10}}{2}.$$

Таким образом, ребро икосаэдра, вписанного в единичный октаэдр, равно

 $\frac{3\sqrt{2}-\sqrt{10}}{2}$.